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ABSTRACT

A fair comparison of quantitative precipitation forecast (QPF) products from multiple forecast sources

using performance metrics based on a 2 3 2 contingency table with assessment of statistical significance of

differences requires accounting for differing frequency biases to which the performance metrics are sensitive.

A simple approach to address differing frequency biases modifies the 2 3 2 contingency table values using a

mathematical assumption that determines the change in hit rate when the frequency bias is adjusted to unity.

Another approach uses quantile mapping to remove the frequency bias of the QPFs by matching the fre-

quency distribution of each QPF to the frequency distribution of the verifying analysis or points. If these two

methods consistently yield the same result for assessing the statistical significance of differences between two

QPF forecast sources when accounting for bias differences, then verification software can apply the simpler

approach and existing 2 3 2 contingency tables can be used for statistical significance computations without

recovering the original QPF and verifying data required for the bias removal approach. However, this study

provides evidence for continued application and wider adoption of the bias removal approach.

1. Introduction

The determination of which quantitative precipitation

forecast (QPF) source is best in a statistical sense often is

more complicated than it first appears. This is because

traditional performance metrics respond both to place-

ment error and to frequency bias. Baldwin and Kain

(2006) used a geometrical model to demonstrate some

aspects of the interaction of placement error and fre-

quency bias for several performance metrics. Brill

(2009) showed that any performance metric computed

from the 2 3 2 contingency table for dichotomous

forecasts is sensitive to frequency bias. The Brill (2009)

critical performance ratio (CPR) can be computed for

any metric and gives the hit rate for added or removed

forecasts above or below which the metric shows im-

provement for an incremental change in frequency bias.

Even forecasts having a perfect frequency bias can re-

ceive an improved performance score by inflating or

deflating the frequency bias. Thus, the comparison of

different QPF sources cannot be fairly carried out unless

those forecasts have very nearly the same frequency

biases at all thresholds considered. The goal of this study

is to provide supporting evidence for a standard ap-

proach to the problem of comparing QPF sources that

do not have similar frequency biases.

The traditional metrics used to evaluate gridded

QPFs are based on 2 3 2 contingency tables of binary

outcomes assigned values of 1 (yes) or 0 (no) for pre-

cipitation accumulations exceeding or not exceeding

given thresholds, respectively, for both forecast and

observed precipitation. The binary values are accu-

mulated over space and/or time to populate the cells

of the contingency table, an example of which is given

by Table 1. The contingency table values may be

normalized by dividing each by the total count of

pairs of forecast and analyzed values. Performance

metrics computed using the 2 3 2 contingency table

values have quantifiable sensitivity to frequency bias

(Brill 2009). Frequency bias is the ratio of the fre-

quency of ‘‘yes’’ forecasts to the frequency of ‘‘yes’’

observations [(a 1 b)/(a 1 c), in terms of the contin-

gency table values in Table 1]. In this study, ‘‘fre-

quency bias’’ and ‘‘bias’’ without the qualifier will

have the same meaning.
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Popular metrics for deterministic QPFs, such as

the critical success index (a.k.a. threat score) and

Gilbert skill score [GSS; Schaefer (1990), a.k.a. eq-

uitable threat score (ETS)], tend to ‘‘reward’’ a

slightly higher frequency-biased forecast with a

higher skill score (Mason 1989; Hamill 1999). But,

this reward occurs only if a sufficient fraction of the

forecast values enhanced by excessive bias become

hits (Brill 2009), where the hit count or fraction is the

value of a in Table 1. Thus, forecasting such that the

frequency bias exceeds unity may be an advantage

since overforecasting that adds enough yes forecasts

corresponding to yes observations can increase the

value of the metric. This boost from increased bias

often is realized for forecasts that place precipita-

tion areas in close proximity to areas of observed

precipitation.

Various efforts have been made to provide a level or

fair comparison among forecasts with disparate bias

characteristics. The contour relabeling approach used

by Hamill (1999) has forecast source selection de-

pendency, is not widely used, and is not evaluated

here.1 Mesinger (2008) derived a mathematically

based adjustment of the hit count as the forecast count

is raised or lowered to achieve unit bias as described

in detail below. The quantile mapping approach of

(Clark et al. 2009, p. 1134) removes the bias by

matching the frequency distribution of each forecast

to that of the verifying analysis or point data and is

described in detail below. The latter two methods are

compared in this study. Eliminating or minimizing the

effect of frequency bias is essential to assessing the

statistical significance of differences in 2 3 2 contin-

gency table metrics between two forecasts (Hamill

1999). A recent study (Gowan et al. 2018) implicitly

removes bias by evaluating forecasts within the con-

text of the model and observation climatologies at a

point (e.g., a 95th percentile event), but given the

historical utilization of fixed thresholds in operational

QPF verification, this implicit approach was not ex-

plored in this paper.

The objective of this study is to compare the bias-

adjustment (BA) technique of Mesinger (2008) and

the bias-removal (BR) technique of Clark et al. (2009,

p. 1134). An advantage of the BA technique is that

it can be applied to existing contingency tables; the

BR technique must be applied when the QPF is ver-

ified, as it requires that the hit count after bias re-

moval be saved in addition to the elements shown in

Table 1.2 Of interest to the National Weather Service

(NWS) Weather Prediction Center (WPC), the NWS

Environmental Modeling Center (EMC), and others

is whether the BA and BR techniques yield the same

result for the statistical significance of differences

in GSS for pairwise comparisons of various QPFs.

If the BA method reliably gives the same result as

the BR method, then historical contingency table

data can be assessed without having to access and

modify the original QPFs using verifying analyses,

sidestepping the need to apply the BR approach ret-

rospectively. In some cases, perhaps only the con-

tingency table data still exist, and the BR method

cannot be applied.

The BA and BR methods cannot be expected to

agree precisely on the value of performance metrics.

Even disagreements between the two methods as to

which of two QPF sources has the better performance

can be tolerated so long as the differences in the

metric are not statistically significant. Statistical sig-

nificance is assessed using the resampling method

of Hamill (1999) with a test level of 0.05. The prop-

osition is that both the BA and BR methods always

agree on which QPF source in a pairwise comparison

is better when the difference in the metric is statisti-

cally significant for both methods. Logically, one

counterexample is sufficient to refute the proposition

that the BA and BR methods lead to the same result

regarding statistically significant differences in met-

rics. Thus, the purpose of this effort is to seek out

situations for which the BA and BR approaches

provide contradictory results, both of which are sta-

tistically significant.

The WPC has an archive of 2 3 2 contingency table

verification data for several sources of QPFs. The hit

rate determined by the BRmethod has been included in

this archive for a period of several years. This study

makes use of these data to directly compare the BA and

BR methods and judge whether or not the two methods

can be utilized interchangeably.

TABLE 1. Example 2 3 2 contingency table of accumulated

counts or frequencies (a, b, c, d) for observed and forecast pre-

cipitation exceeding or not exceeding some threshold Q.

Outcomes Observation$Q (yes) Observation,Q (no)

Forecast$Q (yes) a b

Forecast,Q (no) c d

1 The focus of Hamill (1999) is hypothesis testing by resampling,

not frequency bias elimination.

2 After bias removal, the forecast frequency equals the observed

frequency; thus, the modified forecast count does not have to be

saved unless it is needed as a check on the BR process.
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2. Frequency bias treatment methods

The BA and BR methods are very different in how

they function to eliminate the effect of bias when com-

paring performance metrics for differently biased fore-

casts. Tomake this point clear, it is necessary to describe

each method in some detail.

a. The BA approach

The BA approach of Mesinger (2008) attempts to

place the forecasts being compared on an equivalent

basis by adjusting all forecasts to unit frequency bias.

The Mesinger (2008) version of BA provides a more

mathematically sound refinement to the earlier ap-

proach of Mesinger and Brill (2004), and is ‘‘based on

the assumption that the increase in hits per unit increase

in false alarms is proportional to the yet unhit area’’

(Mesinger 2008). This BA approach attempts to impart

to scores like the GSS a stronger measurement of

‘‘placement accuracy’’ via the modified hit rate and unit

frequency bias.

The quoted assumption in the preceding paragraph is

expressed by Mesinger (2008) as a differential equation

rendered in terms of forecast, hit (correct forecasts), and

observed frequencies, F5 a1 b,H5 a, andO5 a1 c,

respectively, where a, b, and c are frequencies from

Table 1. The differential equation is

dH

dA
5b(O2H) , (1)

where dA 5 dF 2 dH, and b is a constant deter-

mined from the known values of F, H, and O. The so-

lution for the adjusted hit rate [Mesinger (2008); see his

Eq. (11)] is

H
a
5O2

F2H

ln
O

O2H

� � lambertw

�
O

F2H
ln

�
O

O2H

��
,

(2)

whereHa is the bias-adjusted hit rate and the ‘‘lambertw’’

function returns the value of w given z in the equation

z 5 wew. In (2), z is the argument of the lambertw

function, which can be solved quickly by an iterative

method (e.g., file 443 under the Collected Algorithms

catalog online at http://www.netlib.org/toms).

In (2) the BA hit rate is a function of F, H, and O

and, consequently, the elements a, b, and c of the orig-

inal 2 3 2 contingency table. To compute a BA perfor-

mance metric, H is replaced by Ha and F is replaced by

O (giving unit bias), so that themodified contingency table

of frequencies has a0 5 Ha, b
0 5 O 2 Ha, c

0 5 O 2 Ha,

and d0 5 1 2 2O 1 Ha.

To investigate how the BA modifies the GSS as

a function of bias, (2) is rewritten in terms of proba-

bility of detection (POD) P5H/O, and bias B5 F/O,

yielding

H
a
5O2

O(B2P)

ln
1

12P

� � lambertw

�
1

B2P
ln

�
1

12P

��
.

(3)

If the event frequencyO and PODP are held constant in

(3), the effect of changing bias is isolated because Ha

becomes a function only of B. But, since O is constant

for a specified event frequency, analyzing the bias re-

sponse with POD constant amounts to only changing

F in (2).

Using (3), differences between the BA GSS and GSS

can be computed for given event frequencies and

probabilities of detection and plotted as a function of

bias, as shown in Fig. 1. The requirement that F is

greater than or equal to H sets a lower limit on the

possible range of biases to evaluate, a lower limit that

depends on the P value being considered. The differ-

ences between BA GSS and GSS become very large

near this lower limit of bias for each P value (Fig. 1). As

bias decreases below the value of 1, the differences be-

tween the BA GSS and GSS rapidly increase as bias

approaches the POD limit. Common events (O 5 0.30)

having a low POD exhibit the least abrupt increase as

bias decreases below unity. Above unity, rare events

(O 5 0.002; red curves in Fig. 1) have BA GSS values

lower than the GSS values (negative differences),

whereas common events have higher BA GSS values

with an upward trend as bias increases. If forecast

sources tend to be underbiased for rare events and

overbiased for common events, Fig. 1 shows that the BA

GSS will generally be larger than the GSS value, except

in the case of overbiased common events with high POD

(solid red curve). It is also possible that events more

frequent than 0.002 depicted in Fig. 1 and predicted with

greater than unit bias will have lower values for the BA

GSS. But the overall impression from the shape of these

curves is that a very low bias gets a much stronger in-

flation of GSS than a high bias gets a reduction of GSS

(particularly as common high-biased events also show a

modest inflation of GSS).

b. The BR approach

The BR approach of Clark et al. (2009, p. 1134) differs

significantly from the BA approach, as it matches the

forecast precipitation distribution to the observed dis-

tribution using a technique conceptually similar to the

computation of a probability-matched mean (Ebert 2001)
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and identical to the method of transformation of fre-

quency distributions described by Panofsky and Brier

(1968, 40–42), achieving unit bias without an assumed

mathematical response among the contingency table

(Table 1) counts. In contrast to the BA method, the BR

approach retains the actual QPF placement information

rather than inferring it from contingency table values.

The BR approach replaces forecast values with match-

ing elements from the distribution of analysis values;

due to this manipulation of the original gridded forecast

by the verifying analysis, it must be performed while this

gridded information remains available. As discussed in

section 1, this requirement limits the applicability for

historical verification datasets for which only contin-

gency counts have been retained.

To demonstrate how the BR method works, synthetic

(fictitious) forecast and observed data are created as

shown in Table 2 for a spatial domain represented by

10 points. The quantilemapping proceeds in left-to-right

order of the columns in Table 2. First, the forecast and

observed values (first and second columns) are sorted in

ascending order, to form the forecast and observed or-

der statistics (third and fourth columns). Then, the

quantile mapping is done as follows: for each forecast

value, find its position (quantile) in the forecast order

statistics, then locate the observed value that has the

same position in the observed order statistics and re-

place the forecast value with that observed value. For

example, consider the first forecast value in Table 2:

0.25. The value 0.25 is the 40th percentile (0.4 quantile)

in the sorted forecast order statistics. The 40th percen-

tile in the sorted observed order statistics is 0.43. Thus,

the first forecast value is replaced by 0.43, while the

observed value at the spatially located point is 0.48. This

replacement operation continues through all of the

forecast values, ending with the final and largest forecast

FIG. 1. BA GSS minus GSS difference as a function of frequency bias for two event fre-

quencies O [(a 1 c)/(a 1 b 1 c 1 d) in Table 1]—common (O 5 0.30; red curves) and rare

(O 5 0.002; black curves)—and three different probabilities of detection [(a/(a 1 c) in

Table 1]—0.25 (long dash), 0.50 (short dash), and 0.75 (solid).

TABLE 2. Synthetic quantile mapping demonstration data. The first and second columns give the forecast and observed data at their

original spatial locations. The third column contains the forecast data sorted from low to high, and the fourth column contains similarly

sorted observed data. The fifth column shows quantilemapped forecast data back in proper spatial position (see section 2 for details on this

process). Finally, the last column repeats the second column to show the modified forecast data in proper association with the

observed data.

Forecast Observed Sorted forecast Sorted observed

Quantile mapped

forecast Observed

0.25 0.48 0.09 0.09 0.43 0.48

0.11 0.09 0.11 0.17 0.17 0.09

1.02 1.85 0.15 0.22 1.41 1.85

0.09 0.22 0.25 0.43 0.09 0.22

0.77 0.62 0.33 0.48 0.84 0.62

0.95 1.12 0.62 0.62 1.12 1.12

0.33 0.43 0.77 0.84 0.48 0.43

0.15 0.17 0.95 1.12 0.22 0.17

0.62 0.84 1.02 1.41 0.62 0.84

1.32 1.41 1.32 1.85 1.85 1.41

6 WEATHER AND FORECAST ING VOLUME 34

Unauthenticated | Downloaded 02/11/21 08:05 PM UTC



value, 1.32, being replaced by the largest observed value,

1.85. In the synthetic data in Table 2, the forecasts have a

low bias, and thus the forecast values tend to be replaced

by larger values from the observed order statistics.

The BR method operates independently of the thresh-

olds ultimately used to construct 2 3 2 contingency ta-

bles. The BR method does not alter the placement

of heavy or light forecast precipitation; it only modifies

the amounts.

Given the substitution nature of the BR approach, it

cannot be analyzed using an equation like the BA ap-

proach, but a graphical demonstration of how the BR

approach operates on a real gridded data case is illus-

trative and is provided in Fig. 2. The demonstration case

here uses the mean QPF output from a high-resolution

ensemble system as the forecast on which to apply bias

removal. The smoothing that results from averag-

ing members together to produce an ensemble mean

QPF typically leads to a (spatial) overprediction of

light precipitation, and an underprediction of heavier

amounts.

Comparing the raw 24-h ensemble mean (Fig. 2a)

with the BR 24-h mean (Fig. 2b) shows a notable re-

duction in coverage of measurable (greater than or

equal to 0.01 in.) rainfall. The increased coverage of

heavier amounts in the BR QPF is evident along the

Kentucky–Tennessee border, over northern New

England, and over the Gulf of Mexico, and better re-

flects the high-end intensity of the precipitation anal-

ysis being matched (Fig. 2c). Even though the BR

approach replaces the true QPF values with corre-

sponding values from the analysis, the orientations and

spatial distribution (placement) of the raw model pre-

cipitation forecast features are unchanged by the BR

process. How the BR approach modifies the raw pre-

cipitation forecast depends on the bias properties of the

forecast, but the intensity frequency distribution of the

modified QPF matches that of the observations, while

placement errors remain intact. This neutral matching

of forecast intensities to verifying analyses without any

additional assumptions is a desirable property of the

BR approach.

FIG. 2. The 24-h precipitation totals (in.) for (a) raw ensemble

mean QPF, (b) BR ensemble mean QPF, and (c) the verifying

CCPA precipitation analysis.

FEBRUARY 2019 PYLE AND BR I L L 7

Unauthenticated | Downloaded 02/11/21 08:05 PM UTC



3. Description of data

For the purposes of this study, almost any archive of

QPFs from several different sources along with the

verifying analyses could be used. This is not a study

designed to argue that one particular forecast is better

than another. The focus here is on evaluating two fre-

quency bias treatment methods in making fair assess-

ments of statistically significant differences. Since this

work was a collaboration of two national centers, WPC

and EMC, it was convenient to use theWPC database in

which theBRmethod has been utilized for several years.

The verifying precipitation analyses are from the

climatology-calibrated precipitation analysis (CCPA;

Hou et al. 2014). The 4-km resolution analyses are re-

mapped onto the 20-km-resolution WPC QPF grid do-

main covering the contiguous United States (CONUS).

The remapping method preserves area averages. The

verification is done at 20-km resolution.

The 6-h QPF verification database utilized in this

study is maintained by WPC and contains summary

contingency table statistics for QPFs from a variety of

operational modeling systems, a WPC-produced multi-

model mean, and theWPC operational human 6-hQPFs

[described by Novak et al. (2014)]. This database con-

tains the additional contingency table value (the hit

count after the BR technique has been applied) from

January 2014 onward, enabling comparisons between

BR and BA over this relatively recent period.

The European Centre for Medium-Range Weather

Forecasts (ECMWF) verification data utilized for this

study were generated from a 18 3 18 output grid. This
spatially degraded ECMWF data have a lower pre-

cipitation bias for heavier precipitation than exists for

a higher-resolution ECMWF product also available

from the WPC verification database. However, for the

purposes of this study, the very low bias of the lower-

resolution ECMWF product demonstrates some of

the BA behavior explored in section 2 and thus is uti-

lized here. Verification data for a multimodel weighted

ensemble mean (WEM) QPF were also used. The

WEM process combines deterministic model QPFs

with the QPFs from an ensemble prediction system.

Where forecast uncertainty is large, the WEM QPF is

weighted more toward the mean of all the QPFs. Where

uncertainty is small, the WEM QPF is weighted more

toward the mean of the deterministic model QPFs.

The uncertainty is measured in terms of the coefficient

of variation over all the QPFs at each grid point. Fur-

ther details on this product may be found in Novak

et al. (2014, appendix A). The WEM QPF is gener-

ated within WPC to provide guidance for WPC QPF

forecast products.

This analysis of QPF performance assessment is based

on pairwise comparisons of two QPF sources utilizing

biased (uncorrected) GSS and the two bias-corrected

(BA and BR)GSSmetrics, focusing on 6-month periods

(an April–September warm season and an October–

March cool season) over western and eastern CONUS

verification regions3 (Fig. 3). The focus on different

geographical areas and different seasons affords a

greater possibility for the emergence of contradictory

indications by the BA versus the BR method for statis-

tically significant differences. Hypothesis testing of the

statistical significance of the difference in skill scores

between pairs of forecasts uses the random resampling

technique described by Hamill (1999), with 2000 sam-

ples testing the hypothesis that the two skill scores are

effectively the same at the 95% confidence level (0.05

test level). Frequency bias also was computed for each

system in these comparisons, as it provides a framework

for understanding the bias-corrected GSS behavior de-

scribed in the next section.

4. Analysis results

Comparing the WPC human-generated forecast

product (guided in large part from blending solu-

tions from multiple modeling systems) against a

well-respected deterministic modeling system, such as

the ECMWF, or against a carefully constructed blend of

multiple sources of QPFs, such as in the WEM product,

addresses an increasingly common question: does the

human forecaster add value over and above model

guidance (e.g., Novak et al. 2014)? But as these forecasts

typically have different bias characteristics, this ques-

tion is not straightforward to answer without applying

a robust method of removing the influence of the

frequency bias.

For the six-month 2015/16 cool season and limiting the

verification to the western United States, a comparison

betweenWPC human-generated forecasts and ECMWF

(truncated to ECM in the plot) deterministic forecasts

(Fig. 4) shows that identifying the better of the two

forecasts varies with the intensity threshold and depends

on which one of biased GSS, BA GSS, or BR GSS is

considered. At the 0.01-in. threshold, both theWPC and

ECMWF forecasts have a high frequency bias. In both

the ‘‘biased’’ (uncorrected) GSS and BA GSSs, neither

system is significantly better than the other, as their

3 Note that the BR technique is applied separately over each

subregion to ensure that the BR bias is unity when multiple sub-

regions are combined, such as is done here with the aggregation

into western and eastern CONUS regions.
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performance is comparable by these twometrics. From

the BR GSS perspective the ECMWF forecast is sig-

nificantly better, indicating superior placement of

precipitation by the ECMWF, but with a higher bias.

This result evokes an important point: BR favors an

overbiased forecast if the forecasts removed are not

hits, in other words, if placement is good. Therefore, it

remains imperative to always show the frequency bias

when reporting performance metrics computed from

the 2 3 2 contingency table, even if a bias-removal

treatment has been applied. At the 0.1-in. threshold,

the biased GSS and BA GSSs provide a similar sense

of relative skill (ECMWF significantly better than

WPC), while the BR GSSs show very little difference

in skill between the two (equivalent placement accu-

racy). The frequency biases of the two forecasts are

fairly similar at the 0.1-in. threshold. The 0.25–1-in.

thresholds show comparable patterns of behavior: the

biased and BR GSSs both indicate that the WPC

forecast is significantly better (not quite significant for

biased GSS at 0.25 in.), while the BA GSS increases

the skill score of the low-biased ECMWF forecast by a

larger amount than does the BR GSS, leading to the

ECMWF forecast being significantly better from the

BA GSS perspective. The large increase in the BA

GSS at the 1-in. threshold relative to the biased GSS

appears to be a real-world example of the strong in-

flation of GSS that the BA approach can provide for

rare events at sufficiently low frequency bias (Fig. 1).

The sharp disagreement between the BA and BR ap-

proaches at this threshold provides clear evidence that

the BA approach cannot be relied upon to replicate

the BR result.

Comparing WPC forecasts against the WEM blended

forecast product for the 2015/16 cool season over the

eastern United States (Fig. 5) shows sample responses

for forecasts that have somewhat different frequency

bias characteristics than seen in Fig. 4 and provides

multiple examples of high-biased forecasts. At the 0.01-

and 0.1-in. thresholds, WEM is significantly better than

WPC by all three metrics shown. The BA and BR GSSs

move the scores in opposite directions relative to the

biased GSS, though. For high-biased light precipitation,

the BA tends to reduce the score by eliminating hits,

while the BR often boosts the score despite the potential

for the removal of hits. The BR and BA responses to

bias reduction are examined in terms of the Brill (2009)

CPR for the GSS in the following discussion of the

0.25-in. threshold in Fig. 5.

At the 0.25-in. threshold, the biased GSS and BR

GSSs both show the WEM being significantly better

than the WPC forecast, whereas the BA reduces the

FIG. 3. Map showing the subregions utilized in the WPC QPF database, with the heavy

magenta line separating the subregions that are combined to form the western CONUS and

eastern CONUS verification regions.
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GSS for the more highly biased WEM forecast, making

it significantly worse than the WPC forecast. This is a

case of opposite results for statistically significant dif-

ferences and merits closer inspection. A useful tool for

this inspection is the Brill (2009) CPR. For reduction in

bias to unity, the GSS CPR is an upper bound on the

fraction of removed forecasts that are hits for theGSS to

show improvement. If the hit fraction for the removed

forecasts exceeds the CPR, the score will be degraded.

The CPR for the GSS is given on the ‘‘ETS’’ row of

Table 2 in Brill (2009). The following equation derived

from Brill (2009) expresses the GSS CPR in terms of the

fractions F, H, and O:

GSS CPR5
H1O2 2 2OH

F1O2 2OF
. (4)

Table 3 shows the complete CPR analysis for the

0.25-in. threshold for both the WPC and WEM fore-

casts compared in Fig. 5. For the WPC forecasts, the

CPR value indicates that if more than about 31% of

the removed forecasts are hits, then the GSS will

decrease. In applying the BR method, only a little

more than 3.5% (DH/DF 5 0.035 67) of the removed

forecasts are hits; so, the GSS shows an increase

from 0.3871 to the BR GSS value of 0.4219. For the

BA method, more than 44% of the removed forecasts

are hits, exceeding the 31% limit and causing the GSS

to decrease from 0.3871 to the BA GSS value of

0.3708. For the WEM forecasts, the CPR value is only

slightly higher compared to the WPC, indicating that

if more than about 31.5% of the removed forecasts

are hits, then the GSS will decrease. But only about

FIG. 4. Pairwise comparisons of WPC and ECMWF (ECM in figure) 6-h QPF forecasts for the 6–24-h forecast

range over the 2015/16 cool season and verified over the western CONUS. For each QPF threshold along the

abscissa, there are three pairs of comparisons ofWPC vs ECMGSS skill shown as color bars plotted against the left-

hand axis: biased, BR, and BA. In the right-handmember of each pair, the 95% confidence interval (CI) for the pair

is shown as a vertical barred line segment. If theGSS color bar of the right-handmember completely contains theCI

segment, it is significantly better than the left-hand member; if the GSS color bar of the right-hand member is

completely below the CI segment, it is significantly worse. The frequency biases for the two forecasts are plotted

with symbols centered on each QPF threshold value, and are plotted along the right-hand axis. Though CIs are not

shown for bias, the frequency biases of the two forecasts differ significantly for all thresholds.
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24% of the forecasts removed by the BR method are

hits; so, the BR GSS shows an increase to 0.4321 from

the biased value of 0.3989 because 24% is well below

the 31.5% limit indicated by the CPR. On the other

hand, more than 39% of the forecasts removed by the

BA method are hits, and the BA GSS value of 0.3634

is consequently less than the original biased value of

0.3989.

Had the CPR analysis been done for a case of bias

increase to unity, the CPR value would serve as the

lower bound for the fraction of added forecasts that

must be hits for the score to improve. For the BR

FIG. 5. As in Fig. 4, but for WPC and WEM for the 2015/16 cool season verified over the eastern CONUS. Though

CIs are not shown for bias, the frequency bias of the two forecasts differs significantly for all thresholds less than 1 in.

TABLE 3. CPR analysis for threshold5 0.25 in. in Fig. 5. The first column gives the source of QPF, the columns labeledH, F, andO give

the hit, forecast, and observed fractions, respectively. The frequency bias and GSS are shown in columns labeled Bias and GSS, re-

spectively. The BR column pertains to the bias removal method, withHr giving the hit rate after bias removal. The BA column pertains to

the bias adjustment method, withHa giving the bias adjusted hit rate from applying (2) or (3). The hit fraction for the removed forecasts is

DH/DF5 (Hx 2H)/O2F , where Hx is either Hr or Ha. The DH/DF fraction is to be compared to the value in the CPR column as

discussed in the text.

QPF H F O Bias GSS CPR BR BA

WPC 0.044 02 0.078 69 0.070 28 1.120 0.3871 0.3101 Hr 5 0.043 72 Ha 5 0.040 29
DH

DF
5 0.035 67

DH

DF
5 0.4435

GSS 5 0.4219 GSS 5 0.3708

WEM 0.051 41 0.099 48 0.070 28 1.415 0.3989 0.3153 Hr 5 0.044 38 Ha 5 0.039 78
DH

DF
5 0.2408

DH

DF
5 0.3983

GSS 5 0.4321 GSS 5 0.3634
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method, the fraction of hits for forecasts removed or

added directly depends on the geometric placement of

the forecast precipitation relative to the analyzed

placement. This is not true of the BAmethod, for which

the hit fraction of added or removed forecasts depends

on the contingency table values that are only indirectly

related to the original relative placement of the forecast

and analyzed precipitation. In the preceding analysis,

theWEM, although overbiased, has better placement of

its QPF than does the WPC forecast for the 0.25-in.

threshold. In any case, the CPR formulation, which de-

pends on the performance metric, quantifies the condi-

tion for improvement or degradation of that metric

when forecasts are added or removed to bring the fre-

quency bias to unity regardless of the method used.

At the 1-in. threshold in Fig. 5, the biases of theWEM

and WPC forecasts are very similar, and it is reassuring

that the biased, BA, and BR GSSs all are consistent in

saying the WPC forecast is significantly better and that

the magnitude of the correction relative to the biased

GSS is comparable for both the BA and BR approaches.

While the focus of this section is on scenarios where the

BA and BR techniques lead to significantly different

results, a majority of verification comparisons are more

like this one, where the underlying differences in skill

are large enough that different bias correction ap-

proaches give the same qualitative answer as to which

forecast is better. However, comparisons of two systems

with comparable skill and differing bias characteristics

are of greatest interest, and are the comparisons for

which the two bias-correcting approaches are most

likely in disagreement as to which QPF is ‘‘better.’’

5. Summary and conclusions

Given the frequency bias sensitivity of 2 3 2 contin-

gency table–based metrics such as the GSS, there long

has been an interest in ways to reduce or eliminate any

advantage (or disadvantage) that bias may provide to a

system being evaluated. This study examined a pair of

techniques (BA and BR) used to provide bias-corrected

QPF skill scores, motivated by an interest in seeing how

consistent they are in determining the more skillful of a

pair of forecasts from a bias-corrected perspective with

the assessment of statistical significance of differences.

Each technique has some inherently desirable traits,

along with some inherent problems or limitations.

The BA is readily applicable to any set of 2 3 2 con-

tingency table data, and how it changes a skill score such

as GSS can be understood unambiguously from the

mathematical formulation. However, it is disconnected

from the spatial distribution of the original forecast and

is subject to the assumptions made in formulating the

technique. The BR adjusts the QPF to exactly match the

frequency distribution of the verifying analysis, and by

doing so in the spatial domain the actual bias-corrected

forecast can be viewed, providing graphical clarity on

what is being changed by the removal of bias. However,

it lacks easy applicability to historical contingency table

statistics and cannot be mathematically analyzed in the

clear way that the BA approach can be. Also, since the

BR technique replaces forecast values with analysis

values, it can in theory produce a perfect skill score

(e.g., GSS 5 1.0) at some threshold without any actual

forecast hits, making it potentially troublesome in a

conceptual sense (F. Mesinger 2017, personal commu-

nication). However, the conceptually troublesome pos-

sibility requires perfect relative placement of forecast

and observed precipitation. This theoretical possibility

and other scenarios discussed in this analysis highlight

the importance of always showing frequency bias along

with performancemetrics, regardless of whether or not a

correction is made for bias.

In terms of response, differences between the two

approaches seemed to fall into two primary realms for

the examples examined here. For high-biased light

precipitation, such as the 0.01-in. threshold in Fig. 4, the

BA approach lowered the GSS due to removing hits in

reducing the bias to one, while the BR approach of

trimming light precipitation in a statistically consistent

and placement preserving way (Fig. 2) generated an

increase in GSS. Countering the inherent advantage of

high-biased forecasts has been a motivating factor for

seeking bias-corrected approaches, and the BR ap-

proach often rewards slightly high-biased forecasts, but

only if the relative (spatial) placement is good. In the

case of correcting low-biased QPFs, the BA tends to

provide a larger increase in GSS than does the BR ap-

proach, and this scenario is often where conclusions

about which forecast is better are reversed due to this

discrepancy between the BA and BR bias corrections.

As the low-biased QPFs often are produced for higher-

intensity thresholds from blended or ensemble mean

products, these contradictory results based on choice of

BA or BR bias correction often apply to verifications of

the most impactful or significant weather events.

The different responses of the two bias-correction

approaches, even if limited to specific scenarios, create

limitations for historical cases for which the BR ap-

proach is not possible. The results here show that the

BA approach on historical verification 2 3 2 contin-

gency table data will not provide a bias-corrected result

that would agree with the preferred BR technique for

all bias scenarios. The authors recommend that the

BR approach become the standard technique for bias-

correcting QPF for verification. This recommendation
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may imply the need to modify verification systems, such

as the Model Evaluation Tools (MET) package (Fowler

et al. 2018), which is becoming a standard verification

tool across the breadth of the United States weather

enterprise.
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